

© 2011
Saturnusstraat 60
2516 AH The Hague
The Netherlands
T: 070 - 711 3735
E: info@stipv6.nl

IP-version Dependency in Application
Software

-
Preparing source code for IPv6

 A Stipv6 Whitepaper

 2

© 2011 Stichting IPv6 Nederland

Management Summary

The IT world is reaching a stage where two versions of the Internet Protocol (IP), version
4 and version 6, are active in the IT network environment. As equipment is increasingly
being connected using IPv6, a vital question is: is the application software running on
this equipment ready to cope with this transition towards IPv6?

Information systems that contain hard-coded IP-version dependencies could be at risk of
malfunction if they are exposed to a surrounding network environment that has been
made for IPv61.

The greatest risk is that applications use knowledge of a particular version of IP, for
example, the address format or other properties of the protocol, which does not exist in
the same way in the other version. This usage can be programmed directly into the code
or indirectly through a dependence upon library calls. This may cause the application to
behave incorrectly or may even halt its basic functionality.

Organisations that depend on the correct use of information systems should consider
assessing their applications for IP-version dependencies in order to avoid the risk of
malfunctioning. They must also realise that hard-coded assumptions about IPv4
represent an even bigger risk.

1 See www.sig.eu/en/IPv4-dependency

 3

© 2011 Stichting IPv6 Nederland

Table of contents
1	 Introduction	 ..	 4	
1.1	 Internet	 Protocol	 and	 Software	 ..	 4	
1.2	 Purpose	 and	 content	 of	 this	 document	 ..	 4	

2	 Categorisation	 of	 networking	 capabilities	 and	 software	 ..	 5	
2.1	 Simple	 TCP/IP	 protocol	 stack	 ...	 5	
2.2	 Networking	 Capabilities	 ..	 6	
2.3	 Software	 Categorisation	 ..	 6	

3	 Classification	 of	 networking	 capability	 risks	 within	 software	 categories	 	 7	
3.1	 Risks	 with	 regard	 to	 networking	 capabilities	 ...	 7	
3.2	 Epilogue	 ..	 8	

A.	 Appendix	 A	 Description	 of	 Risks	 ..	 9	
A.1	 IP	 administration	 and	 configuration	 management	 	 9	
A.2	 Connection	 Management	 (Socket	 handling)	 ...	 10	

B.	 Appendix	 B	 Technology	 details	 ...	 13	
B.1	 C	 -‐	 UNIX	 ..	 13	
B.2	 MS	 Windows	 ...	 13	
B.3	 .NET	 ...	 13	
B.4	 Java	 ..	 13	

 4

© 2011 Stichting IPv6 Nederland

1 Introduction

1.1 Internet Protocol and Software
The Internet Protocol (IP) is often associated with routers, switches, computer platforms
and networks built on these components. However, modern information systems rely on
information supplied and processed by software on computers anywhere that are
connected to the Internet.

The IT infrastructure, comprising network components, computer platforms, software
libraries and application programs, must ensure that information is processed correctly.
A transition of the IT infrastructure to a new version of the Internet Protocol requires
software components to operate in a dual-stack environment, which means that both
IPv4 and IPv6 protocol stacks are active. Figure 1 gives an abstract overview of the
relationship between application, operating system and network infrastructure.

Figure 1 Abstract view of the IT infrastructure

1.2 Purpose and content of this document
The purpose of this document is to describe IP aspects in software, so that these
descriptions can be used to help search for, identify and solve any risks that the software
may represent with regard to the use of IP. The target reader of this document is the IT
manager. Some technical details are presented in the appendices. This document is not
intended to be fully exhaustive but rather to serve as a good starting point.

The software dealt with in this document is application software rather than systems
software. Systems software that contains IP features is supposed to be part of the
operating systems, the network components or possibly the libraries. Application
software is always dependent on the correct functioning of the systems software it uses,
whether it is IP related or not.

 5

© 2011 Stichting IPv6 Nederland

2 Categorisation of networking capabilities and software
This chapter describes categories of networking utilisation in software and the types of
software that are relevant given the required IP knowledge.

When assessing IP-version dependency, some questions to ask are: does the software
system operate in a networked environment? Does the system contain network-
dependent features? How is the software system constructed? At which level are
networking capabilities being used in the software?

The next sections provide a simple model for what is known as the TCP/IP stack as well
as categorisations that should help to identify and localise the risks.

2.1 Simple TCP/IP protocol stack
The Internet Protocol is the binding element in the global IT infrastructure. Applications
should use the Internet Protocol determined in the TCP/IP protocol stack. This stack of
network communication protocols provides the application with services that enable
data transport between applications and users, and between different applications.
Application software should use the communication services independently from the
underlying protocol layers. Differences in services should be dealt with in the underlying
protocol layers. The IP layer is the central layer that binds all services together. This
principle is depicted in the figure below.

Figure 2 The model exposed by IP to higher-layer protocols and applications2

2 Figure from IETF journal: Evolution of the IP Model by Dave Thaler http://isoc.org/wp/ietfjournal/?p=454

 6

© 2011 Stichting IPv6 Nederland

2.2 Networking Capabilities
Two categories of IP usage that may contain risks can be identified:

• IP-administration and configuration management: this capability concerns the
input of IP address information through a user interface for software-
configuration purposes and the output of address information to a log file for
logging the maintained connections. The software must be able to cope with
both versions of IP.

• Connection management (sockets): this capability relates to initiating and

sustaining a connection in order to transport information. IP connections are
managed through so-called “sockets”. These are software objects that represent
a connection to a destination on a possibly remote network and that can be
opened, written to, read from and closed. Connections should be made
regardless of the version of IP used.

2.3 Software Categorisation
A software system may comprise different parts that range from off-the-shelf products
that can be used “as is” to custom software. A categorisation often used is:

• Package or framework: these types of software are supplied with configuration
information on how to compose the functionality and establish network
connections

• Third-party library: software that provides packaged services, for example, for

IP-connection management in or for a networked environment

• Platform library: software bundled with a platform (UNIX, Windows) that
provides, for example, packaged IP services in or for a networked environment

• Custom-developed software: software that contains any or all of the

networking capabilities and/or uses the services offered by libraries or
frameworks

 7

© 2011 Stichting IPv6 Nederland

3 Classification of networking capability risks within
software categories

This chapter describes the risks associated with networking capabilities within the
software categories identified. It concludes with a few suggestions for mitigating these
risks.

3.1 Risks with regard to networking capabilities
Software that is supplied and deployed as a package is ready for use. Such software
ought to provide the necessary network services without any burden for the user. The
customer should be aware that he or she is dependent on the supplier, and should verify
(by questioning and testing) the proper functioning of the package.

Software that provides specific networking capabilities and that is supplied and
embedded in applications as a third-party library, requires the correct usage of the API,
administration and testing of the services. The supplier of the third-party library is
responsible for the proper functioning of the library as a product; the user is responsible
for the proper usage of the library by integrating it correctly. If the client is using an
open-source library, the client must make sure to apply an up-to-date version of it.

Software that provides specific networking capabilities that are part of a computer
platform requires the correct usage of the API as well as the administration and testing
of the services. The questions that need to be answered in this respect are: are the
services being implemented according to the standards, and do they provide the right
communication channels to other platforms? The supplier of the platform can be held
responsible for the proper functioning, but the customer is responsible for the proper
usage of it by integrating it correctly.

Custom-developed software that provides networking capabilities requires expert
domain knowledge for its construction and testing. Only an expert can be expected to
program IP networking and its administration correctly. General application developers
often do not have these skills and may thus increase the risk of failure. 3

The table below (table 1) was devised in answer to the question: how do we classify
(rate) the IP usage and associated risks, given the software categories? In this table we
have classified the occurrence of risks as follows:

+ : IP dependency and risks must be validated but are expected to be small.
0 : IP dependency and risks must be validated and tested, and may be present.
- : IP dependency and risks must be validated and tested; domain knowledge is required.

3 An example of this is the usage of broadcasting

 8

© 2011 Stichting IPv6 Nederland

 Administration

& Configuration
Management

Connection
Management

Package / Framework + +
Third-party library 0 +
Platform library - 0
Custom-developed - -

Table 1 Occurrence of risks

As explained in the introduction, this classification provides a starting point for the
search for elements of risk that may be present in software. Organisations using custom
developed software should be aware of these potential risks in their software. They are
advised to investigate their software and to mitigate the risks.

3.2 Epilogue
In general, application software should not contain any specific references to the
communication protocols that are used. The usage of libraries or other abstraction
mechanisms should hide such details. If dependencies on IPv4 do exist, the application
may fail when the underlying deployment environment makes the transition from IPv4
to IPv6. Software that is well constructed applies a layered model as illustrated in Figure
2 and does not contain specific knowledge or usage of either IPv4 or IPv6.

Application software that contains hard-coded IP addresses or DNS names is at risk. To
mitigate these risks an application programmer should host this information in
configuration files. If the programmer must refer to a domain, a host name must be
used. This is also the case if a reference to a host address is needed.

Finally, an organisation with application software should not only consider the software
item itself but also any software, configuration scripts and log file parsers relating to the
single item. The complete chain of software items could be affected by the transition
and should therefore be adapted.

 9

© 2011 Stichting IPv6 Nederland

A. Appendix A Description of Risks
This section describes the risks in more detail, what exactly they are, how they can be
localised and how they can be mitigated.

A.1 IP administration and configuration management

A.1.1 What is IP administration and configuration management?

IP administration and configuration management concerns the input, registering and
logging of IP data. Many organisations have custom developed software with this
functionality, but the IT department does not maintain this.

A.1.2 What is the related risk?

Data in a specific IP-dependent format is not expected and is thus misinterpreted. The
administration software fails unexpectedly.

A.1.3 How to find the elements at risk?
IP address related programming code can be recognised in at least four ways:

• When the IP address is already available in textual form it can be converted to
binary form and vice-versa using the following functions:

o IPv4-only: inet_aton(), inet_ntoa(), inet_addr()
These functions are deprecated because they do not handle IPv6
addresses. It is therefore not recommended that you use them when
developing new software or maintaining existing software

o IPv4 and IPv6: inet_ntop(), inet_pton()
These functions handle IP-address conversions for both IPv4 and IPv6
and are recommended for use

• Usage of the name-to-address functions that convert a fully qualified domain
name or IP address literal character string into a binary form of an IP address or
vice-versa:

o IPv4-only: gethostbyname(), gethostbyaddr()
These functions don’t work well with IPv6 and can be considered IPv4
only

o IPv4 and IPv6: getaddrinfo(), getnameinfo()
These functions supersede the older functions and support IPv4 and
IPv6 environments

• Usage of the length of the buffer reserved for an IP address in a character string:
o IPv4: 15 is the maximum length of a character string representing an IP

address
o IPv6: 39 is the maximum length without IPv4 address

embedded
o IPv6: 45 is the maximum length with IPv4 address embedded

• Common regular expressions that deal with either IPv4 or IPv6 notation and do
not handle the other format (See A.1.4)

A.1.4 Examples of regular expressions

In software engineering practice several regular expressions are used to parse or validate
IP addresses in character strings. Most of them assume and verify that the address is an

 10

© 2011 Stichting IPv6 Nederland

IPv4 address. The following regular expressions were found in a tutorial on the Internet4,
and we assume that they are used literally in source code. The examples only match IPv4
addresses and do not cover IPv6 addresses:

• (\d{1,3}\.){3}\d{1,3}
• \d+\.\d+\.\d+\.\d+
• \d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}
• \[0-9]{1,3}\.\[0-9]{1,3}\.\[0-9]{1,3}\.\[0-9]{1,3}
• ([1-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(\.([0-9]|[1-9][0-9]|1[0-9][0-

9]|2[0-4][0-9]|25[0-5])){3}
• (25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
• ([01]?\d\d?|2[0-4]\\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-

4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])
• (25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-

9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)

In implementations, these expressions might be surrounded by delimiters, white space
or regular expression notations such as ^, $ or /b. Depending on the way they are used,
they may also contain one or more pairs of capturing parentheses.

Notice that regular expressions that are not literally the same can still be semantically
the same. Take this into account when searching for issues related to regular
expressions. A possible strategy could be to reverse the test and try to parse IPv4
addresses with the regular expressions in the source code and then examine the
expressions that accepted the IPv4 address as valid input.

A.2 Connection Management (Socket handling)

A.2.1 What is a socket?

A socket is one end of an inter-process communication channel. The two processes
(client and server) each establish their own sockets. Socket handling concerns the setup,
use and finalisation of connections and data communication through these
connections.

A.2.2 Goal

Develop application programs that are also IPv6 aware or IPv6 enabled so that they can
operate in both IP environments. Programs should work in an environment that
supports both IPv4 and IPv6. A specific program may be:

• IPv6-unaware: the program uses deprecated IP library functions and is not able
to communicate to IPv6-only destinations

• IPv6-aware: the program is able to communicate with nodes that have IPv6
addresses

• IPv6-featured: the program takes advantage of specific IPv6 features (e.g. flow
labels)

• IPv6-required: the program requires IPv6 features and cannot operate in an IPv4
only environment

4 www.regular-expressions.info

 11

© 2011 Stichting IPv6 Nederland

A.2.3 Which risk?

Developed programs may fail in two ways:

• The program is IPv6 unaware: the program runs in an IPv4 only environment
and cannot handle IPv6 connections

• The program is constructed for dual stack (both IPv4 and IPv6); the program
runs, but the treatment of IP addresses may fail because the programmer lacks
knowledge or context. (Note: this risk is not the same as processing IP address
data: it is an aspect of the protocol)

A.2.4 How to find IP-version dependencies?

The approach to finding IP-version dependencies is to look for the calls, constants and
structures from the specific libraries. In short, this means finding out which libraries are
used. Libraries are supplied with platforms (Windows, Unix) and called from specific
technologies (C, C++, C# and Java). All technologies share the same risk but may use
different libraries and APIs.

The dominant library is the TCP/IP library from 4.3 BSD Unix. This library is ported to
other non-UNIX platforms, e.g. Windows (Winsock). The important description here is
the RFC 3493 document, which describes the changes to the sockets that support the
usage of IPv6. The major changes in the socket API for IPv6 are:

• Possible usage of the protocol family identifier PF_INET6 and address family
identifier AF_INET6 for IPv6 only usage, next to PF_INET and AF_INET for IPv4
only usage.

• New socket address structure to carry the IPv6 address.
• New name-to-address and address conversion functions and several new socket

options.

Table 2 Overview of socket programming5

The use of AF_INET or AF_INET6 is only recommended if the programmer specifically
wants to use a certain IP protocol address (IPv4 or IPv6). The AF_INET address family

5 IPv6 Socket Programming Joonbok Lee KAIST; table adapted to show version independent data structure and

functions

 12

© 2011 Stichting IPv6 Nederland

identifier may have been used in the past to exclude non-IP addresses, but will now also
exclude IPv6 addresses.

The IPv4 only functions (the blue column in table 2) are not recommended; they are
deprecated because they do not handle IPv6 addresses. The data structures are specific
for binary representations of IPv4 or IPv6 addresses and are automatically returned in
the proper form by the IPv4/IPv6 functions in the middle (green) column.

 13

© 2011 Stichting IPv6 Nederland

B. Appendix B Technology details
This section provides details relating to the usage of specific technologies.

B.1 C - UNIX
The dominant language for communication programming is C, and the dominant library
is the TCP/IP library from 4.3 BSD Unix. IPv4 dependency in C and C++ can be found by
looking for the above constructs and functions. Rino Nucara of GARR6 has written an
introduction about IPv6 programming and IPv4 – IPv6 interoperability.

B.2 MS Windows
Before the .NET era Windows applications were built using the Winsock library, derived
from the TCP/IP library. A good starting point for IP knowledge can be found in the IPv6
Guide for Windows Sockets Applications7.

B.3 .NET
Detailed information on IPv6 network programming for .NET framework 4 can be found
in Microsoft’s MSDN library8. A wealth of information on IPv6 can also be found on
Technet9.

B.4 Java
With the release of J2SE 1.4 in February 2002, Java began supporting IPv6 on Solaris and
Linux. Support for IPv6 on Windows was added with J2SE 1.5. While other languages,
such as C and C++, can support IPv6, Java has some major advantages:

• With Java you invest in a single code base that is both IPv4 and IPv6 ready
• Your existing Java applications are already IPv6 enabled
• Migration to IPv6 is easy

Java technology abstracts from the specific behaviour and delivers an advantage in this
respect.

6 See http://www.euchinagrid.org/IPv6/IPv6_presentation/Introduction_to_IPv6_programming.pdf
7 See http://msdn.microsoft.com/en-us/library/ms737579.aspx
8 See http://msdn.microsoft.com/en-us/library/3x7ak53z.aspx
9 See http://technet.microsoft.com/en-us/network/bb530961.aspx

